×

拉普拉斯定理概率论

拉普拉斯定理概率论(拉普拉斯变换和拉普拉斯定理的区别)

fwxlw fwxlw 发表于2025-01-30 03:38:26 浏览5 评论0

抢沙发发表评论

本文目录

拉普拉斯变换和拉普拉斯定理的区别

拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的拉普拉斯变换、拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。拉普拉斯,法国数学家、天文学家,法国科学院院士。是天体力学的主要奠基人、天体演化学的创立者之一,他还是分析概率论的创始人,因此可以说他是应用数学的先驱。1773年解决了一个当时著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。拉普拉斯用数学方法证明行星平均运动的不变性,即行星的轨道大小只有周期性变化,并证明为偏心率和倾角的3次幂。这就是著名的拉普拉斯定理。1784~1785年,他求得天体对其外任一质点的引力分量可以用一个势函数来表示,这个势函数满足一个偏微分方程,即著名的拉普拉斯方程。1786年证明行星轨道的偏心率和倾角总保持很小和恒定,能自动调整,即摄动效应是守恒和周期性的,不会积累也不会消解。拉普拉斯注意到木星的三个主要卫星的平均运动Z1,Z2,Z3服从下列关系式:Z1-3×Z2+2×Z3=0。同样,土星的四个卫星的平均运动Y1,Y2,Y3,Y4也具有类似的关系:5×Y1-10×Y2+Y3+4×Y4=0。后人称这些卫星之间存在可公度性,由此演变出时间之窗的概念。

1的拉普拉斯逆变换是多少

1的拉普拉斯逆变换是L=1/s。

拉普拉斯逆变换为当已知信号函数x(t)的拉普拉斯变换X(s),求解信号的时域表达式x(t)。

拉普拉斯(Pierre-Simon Laplace,1749-1827)是法国分析学家、概率论学家和物理学家,法国科学院院士。1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,1827年3月5日卒于巴黎。1816年被选为法兰西学院院士,1817年任该院院长。

1812年发表了重要的《概率分析理论》一书,在该书中总结了当时整个概率论的研究,论述了概率在选举审判调查、气象等方面的应用,导入「拉普拉斯变换」等。他是决定论的支持者,提出了拉普拉斯妖。

他致力于挽救世袭制的没落:他当了六个星期的拿破仑的内政部长,后来成为元老院的掌玺大臣,并在拿破仑皇帝时期和路易十八时期两度获颁爵位,后被选为法兰西学院院长。拉普拉斯曾任拿破仑的老师,所以和拿破仑结下不解之缘。

拉普拉斯把注意力主要集中在天体力学的研究上面。他把牛顿的万有引力定律应用到整个太阳系,1773年解决了一个当时著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。

拉普拉斯用数学方法证明行星平均运动的不变性,即行星的轨道大小只有周期性变化,并证明为偏心率和倾角的3次幂。这就是著名的拉普拉斯定理。此后他开始了太阳系稳定性问题的研究。同年,他成为法国科学院副院士。

拉普拉斯定理

  • 拉普拉斯定理

  • Laplace定理:设在行列式D中任意取定了k(1≤k≤n-1)行,由这k行元素所组成的一切k级子式与它们的代数余子式的乘积之和等于行列式D。

拉普拉斯展开定理是什么

在数学中,拉普拉斯展开定理(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有 n行 n列,它的拉普拉斯展开一共有 2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。

扩展资料:

拉普拉斯在数学,特别是概率论方面,也有很大贡献。他发表的天文学、数学和物理学的论文有270多篇,专著合计有4006多页。

其中最有代表性的专著有《天体力学》(Traité deMécanique Céleste,15卷16册,1799~1825)、《宇宙体系论》(Exposition du système du monde,1796,中译本1978年版)和《概率分析理论》(Theorie Analytique des Probabilites,1812)。

拉普拉斯把注意力主要集中在天体力学的研究上面。他把牛顿的万有引力定律应用到整个太阳系,1773年解决了一个当时著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。

拉普拉斯《概率的分析理论》的内容有哪些

1812年6月29日,拉普拉斯的著作《概率的分析理论》出版,这部著作实现了概率论研究中由组合技巧向分析方法的过渡,开创了概率论发展的新阶段。

《概率的分析理论》一书,是对前人及拉普拉斯自己研究成果的全面总结,运用17、18世纪发展起来的强有力的分析工具处理概率论的基本内容,使以往零散的结果系统化。这本书除给出概率论方面的一些重要概念、导出包括中心极限定理在内的一些重要定理等内容以外,还引进了被广泛应用的“拉普拉斯变换”,并将概率论广泛应用于观测误差估计、气象、人口统计、保险等科学和社会问题。

1814年,《概率的分析理论》第二版出版,拉普拉斯在书中增加了一个长达150页的绪论,同年该绪论以题为《概率的哲学导论》单独出版。《导论》论述了概率论定义、发展历史、概率的般原理和应用,并阐明了概率的重要概念——数学期望及其计算方法。

拉普拉斯对纯粹数学并不是很感兴趣,他爱好应用,数学只是一种手段,而不是目的,是人们为了解决科学问题而必须精通的一种工具。拉普拉斯的虚荣心较强,经常不交代他的结果的来源,给人的印象好像都是他自己的,事实上,他利用了拉格朗日的许多概念而未做声明。

拉普拉斯在科学上的主要成就涉及天体力学、宇宙论、分析和概率论等方面,他的五大卷《天体力学》(1799~1825)已成为整个科学史上的经典巨著。他在数学方面的贡献也多与天体力学和其他应用研究有关。

拉普拉斯定律

数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

概率论三大定律

概率论三大定律是:伯努利大数定律、中心极限定理、辛钦大数定律

依据考研数学的安排,在学习大数定律之前引入这样两个先修知识点:(1)切比雪夫不等式: ,对任意的ε》0.它的意义是:事件大多会集中在它的期望附近

(2)依概率收敛:如果xn是一个随机变量序列、A是一个常数,对任意的ε》0,有则称Xn依概率收敛于常数A

依概率收敛并不同于传统意义上的“实验无数次后频率会无限靠近概率”,它实际上在概率附近划出了一个小的边界ε。实验结果当然可能发生波动,这个边界的作用就是把波动限制在一个很小的范围内。即使超出这个边界,也只是一个 小概率事件 。(小概率事件是指在一次实验中几乎不可能发生的事件,而在重复实验中一定会发生。)

接着看大数定律:(1)切比雪夫大数定律:这里显然是不严谨的,因为为了方便表述我们省略掉了一些前提条件,好在并不影响对于这个定律本身的理解。

它的数学意义显而易见: 算数平均值依概率收敛于数学期望 。当我们中学做的物理实验中采用多次实验取平均值的方法来减小误差时,实际上理论依据就是切比雪夫大数定律。

(2)伯努利大数定律:伯努利大数定律的条件是Xn服从B(n,p),也就是说Xn是n重伯努利实验中事件发生的次数,它的数学意义是 频率依概率收敛于统计概率 。伯努利大数定律实际上是切比雪夫大数定律的一种特殊情况。

(3)辛钦大数定律:辛钦大数定律在表述上和切比雪夫相差不多,但它的特点在于要求Xi独立同分布,并且要存在期望。

(4)棣莫弗——拉普拉斯中心极限定理 设随机变量Xn服从B(n,p),则对于任意实数x,有 ,其中φ(x)是标准正态的分布函数。 结论:Xn近似服从于N(np,np(1-p))

(5)列维——林德伯格中心极限定理 ,条件:Xn独立同分布、期望和方差存在,有  结论: 近似服从于N(nμ,n )

我们先给出这两个中心极限定理,可能不太好懂,好在他们之间有很深的关系,或者说棣莫弗实际是列维的特殊情况(服从B(n,p))。有了上述的两个中心极限定理,我们就可以在n很大的情况下把任意一个复杂的分布近似地看作一个正态分布,大大减少了分析的难度