×

奥林匹克数学最难的题

奥林匹克数学最难的题(请各位哥哥姐姐帮我找几道奥林匹克数学题做了!)

fwxlw fwxlw 发表于2024-11-23 02:16:35 浏览5 评论0

抢沙发发表评论

本文目录

请各位哥哥姐姐帮我找几道奥林匹克数学题做了!

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比. 5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间? 8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车. 9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米? 10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱? 小学数学应用题综合训练(02) 11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件? 12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的. 13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时? 14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多? 15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米? 16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨? 17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几? 18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米? 19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人? 20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个? 小学数学应用题综合训练(03) 21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米? 22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次? 23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米? 24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成? 25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵? 26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米? 27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米? 28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成. 29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件? 30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米? 小学数学应用题综合训练(04) 31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电? 32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个? 33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱? 34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元? 35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册? 36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个? 37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁? 38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间? 39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把? 40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米? 小学数学应用题综合训练(05) 41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元? 42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米? 43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只? 44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几? 45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米? 46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个? 47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米? 48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之? 49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁? 50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个? 小学数学应用题综合训练(06) 51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级? 52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克? 53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍? 54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离. 55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离. 56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间? 57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米? 58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分? 59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积. 60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积. 小学数学应用题综合训练(07) 61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树? 62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次? 63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明? 64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离. 65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙? 66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时? 67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗? 68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间? 69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度. 70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米? 小学数学应用题综合训练(08) 71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次? 72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少? 73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵? 74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米? 75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离. 76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米? 77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分? 78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块? 79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间? 80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分? 小学数学应用题综合训练(09) 81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几? 82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人? 83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米? 84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度. 85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人? 86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比. 87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米? 88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根? 89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少? 90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟? 小学数学应用题综合训练(10) 91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄. 92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米? 93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间. 94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间. 95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少? 96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱? 97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少? 98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天? 99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长? 100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐? 小学数学应用题综合训练(11) 101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱? 102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年? 103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间? 104. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米? 105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米? 106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人? 107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤? 108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天? 109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台? 110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少? 小学数学应用题综合训练(12) 111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇? 112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工? 113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题? 114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分? 115. 甲、乙两物体沿环形跑道相对运动,从相距150米(环形跑道上小弧的长)的两点出发,如果沿小弧运动,甲和乙第10秒相遇,如果沿大弧运动,经过14秒相遇.已知当甲跑完环形跑道一圈时,乙只跑90米.求环形跑道的周长及甲、乙两物体运动的速度?

求 4年级 最难的奥林匹克奥数题

四年级 第2试 2006年4月16日 上午8:30至10:00 得分:______ 填空题(第小题4分,共60分) 1、25×32÷14+36÷21×25=________. 2、如果5×(2+△×△)-4=2006,那么△=________。 3、如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________。4、如图1,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________。5、有40个连续的自然数,其中最大的数是最小数的4倍,那么最大的数与最小的数之和是________。6、牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉入河中,每次他都捞上3只,最后清查还剩6只。这群羊在过河前共有________只。7、一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到____个桃子。8、三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条件数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上______条鱼。9、从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有______个。10、如图2,两个同样的铁环在一起长28厘米,每个铁环长16厘米。8个这样的铁环依此连在一起长_____厘长。11、图3是3×3点阵,同一行(列)相邻两个点的距离为1。以点阵中的三个点为顶点构成三角形,其中面积为1的形状不同的三角形有______种。 12、如图4,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是______。 13、小强和小明一同到便利店购物,图5是他们两个购物的单据,由此计算出盐每袋___元,醋每袋___元 14、如图6所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是______。 15、现在世界各国普遍采用的公历是1582年修订的格列高里历,它规定:公元年数被4除得尽的是闰年,但如被100除得尽而被400除不尽的则不是闰年。按此规定,从1582年至今共有_____个闰年。二、解答题:(每小题10分,共40分。)要求:写出推算过程。16、如图7所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。 17.甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米。乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。问: (1)两人出发后多久可以开始用对讲机联络? (2)他们用对讲机联络后,经过多长时间相遇? (3)他们可用对讲机联络多长时间? 18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拔到8:00。然后,小明离家前往天文馆。小明到达天文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中。看到闹钟显示的时间是11:20,请问,这时小明应该把闹钟调到什么时候才是准确的? 19.2005年,小张有一次出差的几天有日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16) 第四届小学“希望杯”全国数学邀请赛 参考答案及评分标准 四年级 第2试 一、填空题(每小题4分)二、解答题 16.不存在这样的填法。 (2分) 理由。设所填的数分别是a,b,c,如图所示。假设a+b=奇数. a+c=奇数, b+c=奇数, (5分) 三式相加 左边=2(a+b+c),是偶数, (7分) 右边=三个奇数相加,是奇数, (9分) 而 偶效≠奇数, 所以不存在这样的填法.(10分) 17.(1)(260-20)÷(32+48)=3(小时)。 (3分) (2)20÷(32+48)=0.25(小时)。 (6分) (3)从甲、乙相遇到他们第二次相距20千米也用0.25小时.所以他们一共可用对讲机联络 0.25+0.25=0.5(小时)。 (9分) 答:略. (10分) 18.由小明11日钟显示的时间可知.小明出门共用了3小时20分钟。 (3分) 来回路上共用去1小时50分钟,回家路上用去55分钟. (6分) 从小明到达天文馆,到回到家中共经历2小时25分钟,小明到达天文馆时是9:15,所以回到家中的时间是11时40分,即应把闹钟调到11:40. (10分) 19.先考虑日期数是连续整数的情况。 因为 1+2+3+……+11=66》60, 所以 小张出差不会超过10天。 (2分) 显然,小张不可能只出差1天。 假设出差2天,且第1天的日期数是a,则 a+(a+1)=60,2a=59, a不是整数,因此,小张不可能出差2天。 同理,有 a+(a+1)+(a+2)=60. a=19,可能出差3天; a+(a+1)+(a+2)+(a+3)=60, 4a=54,不可能出差4天; a+(a+1)+……+(a+4)=60, a=10,可能出差5天; a+(a+1)+……+(a+5)=60, 6a=45,不可能出差6天; a+(a+1)+……+(a十6)=60, 7a=39,不可能出差7天; a+(a+1)+……+(a+7)=60, a=4,可能出差8天; a+(a+1)+……+(a+8)=60, 9a=24,不可能出差9天; a+(a+1)+……+(a+9)=60,lOa=15,不可能出差10天。 (6分) 再考虑跨了两个不同月份的情况. 2005年各月的最大日期敛有28,30,31三种. 因为 27+28+1+2《60, 27+28+1+2+3》60, 28+1+2+……+7《60, 28+1+2+……+8》60, 所以不可能跨过最大日期数是28的月份。 同理可判断不可能跨过最大日期数是31的月份。 (8分) 而 29+30+l=60, 30+1+2+……+7《60, 30+1+2+……+8》60, 所以可能在29日,30目,1日这三天出差。 综上所述,有4种可能: (1)出差3天.从19目到21日; (2)出差5天,从10日到14日; (3)出差8天,从4日到11日; (4)出差3天。分别是29日.30日,1日。 (10分)

高三奥数题最难的一道

6分之根号3. 由正弦定理得SinA=2SinC,所以SinC≤1/2,又因为a》c,故C不可能是最大角,所以C≤30°. 所以C最大值为30°,A为90°,B为60°,c=3分之根号3,S=1/2bc=6分之根号3

小学五年级奥林匹克数学竞赛题难度有多大

全美数学竞赛amc82009年试题及答案分享

今天分享的是2009年美国amc8的试题及答案,欢迎大家进行载和测试,答案也给大家附上了,如果看了答案还是解答不出来的,可以做好备注,后期侯妈会抽时间对所有历年考试试题进行视频讲解。为了让同学们更好地学习数学思维,以便在竞赛中取得好的成绩,侯妈也建立了“amc8数学竞赛”小组,欢迎家长进组讨论,一起分享amc8数学竞赛考试方面的经验、经历、以及资源。

一道超级难的奥林匹克数学问题,请各位大哥来解救一下我!

W=+D表取整,Y是年份数,D是这一天在这一年中的累积天数w:星期; w对7取模得:0-星期日,1-星期一,2-星期二,3-星期三,4-星期四,5-星期五,6-星期六W=+57=26152615 mod 7=4那就是星期四啦其实最好用的是蔡勒公式

初一奥林匹克数学题,越多愈好

初一奥数测试题一、填空题。(2分×10=20分)1、浓度为19%的盐水b千克,其中含盐 千克,含水 千克。2、如果十位数1995xy5991能被99整除,则x= 。3、五位数abcde是9的倍数,其中abcd是4的倍数,那么abcde的最小值为 。4、m亩地,亩产水稻a千克,n亩地产水稻b千克,m+n亩地平均亩产水稻 千克。5、将a元按活期存入银行,月利率2.4‰,3个月的利息是 元6、在两位数的质数中,两上数字之和最大的值为 二、选择题。(3分×7=21分)1、有两个数串1、3、5、7、…,1997、1999和1、4、7、10,…1996,1999同时出现在两个数串中的数有( )个。A、333 B、334 C、335 D、3362、能整除任意5个连续整数之和的最大整数是( )A、1 B、2 C、3 D、53、196个苹果,如果不一次拿完,也不一个一个地拿,要求每次拿出的苹果数一样多,拿法共有( )种。 A、4 B、6 C、7 D、94、a公斤盐和b公斤水混成的盐水浓度为( )A、a/(a+b) B、a/(a+b) % C、100×{a/(a+b)}% D、以上都不对5、如果m人d天内可以完成的工作,则m+r人完成此项工作需要( )天A、d+r B、d-r C、md/(m+r) D、d/(m+r)6、如果a÷b的商是111余24,此时b的最小值是( ) A、23 B、25 C、28 D、337、若代数式2y2+3y+7的值为2,那么代数式4y2+6y-9的值是( )A、1 B、-19 C、-9 D、9三、列代数式(3分×5=15分)1、比a小3的数除以比a大5的数的商。2、a,b的差乘以比a,b的和小3的数的积。3、x的3倍与y的和除以x的商与y的3倍的差。4、比x的1/2大5的数与比y的2倍小3的数的商。5、x是一个两位数,y是一个三位数,请列出表示xy的值这个五位数的代数式。四、计算题。(6分×5=30分)1、已知a=3b,c=a/2, 求(a+b+c)/(a+b-c)的值。2、已知(x-2)2+1y-31=0,求xx+yy-xy-yx的值。3、已知(a-b)/(a+b)=2, 求代数式2(a+b)/(a-b)-(a-b)/3(a+b) 的值。4、已知a+b+c=0, 求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3 的值。5、已知正整数p、q均为质数,且7p+q与 pq+11也都是质数,求 pq+qp的值。五、证明题。(8分+7分=15分)1、设M=(b-a)(c-d)(d-a)(d-c)(a-b)(c-b),这里a,b,c,d均为整数,求证12/M(8分)2、证明:若质数P≥5,且2p-1是质数,那么4p+5是合数。(7分)六、应用题。(7分×3=21分)1、某校初一有八个班约四百余人,在列队过程中,3个一排多2个人,3个一排多3人,7个一排又多2人,求该校初一年级有多少个人?(要求出确切人数)2、轮船在A、B两地之间行驶,静水中的速度为每小时m 千米,水流速度为每小时n千米。①列出轮船在A、B两地之间往返一次的平均速度的代数式。②当m=15,n=2时,求出平均速度。3、为了有效地控制沙尘暴等恶劣天气对人类生存环境的破坏,我国北方某地决定植树造林速度,每年40%增长率递增,预计2005年能植树30870亩,问今年准备植树多少亩。

奥林匹克数学竞赛试题

东西两地相距180千米, 甲骑自行车每小时行12千米, 乙骑自行车每小时行18千米, 两人从两地同时相向而行,经过几小时相遇?2. 两辆汽车同时在甲城出发相背而行,快车每小时行43千米, 慢车每小时行37千米, 经过26小时它们相距多少千米?3. 甲在乙后面28千米, 两人同时同向而行, 甲每小时行16千米, 乙每小时行9千米, 甲几小时追上乙?4. 两列火车同时从北京和沈阳相对开出,从北京开出的火车每小时行59千米, 从沈阳开出的火车每小时行64千米, 6小时后两列火车相遇, 北京到沈阳的铁路长多少千米?5. 小华从家里已走出225米, 她的姐姐小芳骑自行车追小华, 已知小华每分钟走75千米, 她的姐姐小芳骑自行车每分钟走120米, 问小芳追上小华需要几分钟?6. 甲乙两人同时从相距27千米的两地相向而行, 3小时相遇, 已知甲每小时行5千米, 乙每小时行多少千米?7. 甲乙两人同时从相距3.5千米的两地背向而行, 甲向东每小时行5千米, 乙向西每小时行4.8千米, 3.5小时后两人相距多少千米?8. 甲,乙两车从相距1200千米的两地同时相向开出, 甲车每小时行55千米, 乙车每小时行45千米, 几小时后两车相距200千米?9. 两架飞机同时从两个城市相向飞行, 2小时相遇, 第一架飞机速度是每小时700千米, 第二架比第一架每小时慢20千米,求这两个城市之间的航线长多少千米?10. 甲,乙两辆汽车同时从东,西两地相向开出,甲车每小时行56千米, 乙车每小时行48千米.两车在距中点32千米处相遇,东西两地相距多少千米?11. 快车和慢车同时从甲,乙两地相向开出,快车每小时行40千米, 经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米,慢车每小时行多少千米?12. 甲,乙两队学生从相距18千米的两地同时出发,相向而行. 一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?13. 甲,乙两车早上8时分别从A.B两地同时相向出发,到10时两车相距112.5千米. 两车继续行驶到下午1时,两车相距还是112.5千米, A,B两地相距多少千米?14. 一辆汽车和一辆摩托车同时从甲,乙两地相对开出,汽车每小时行40千米, 摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米, 甲,乙两地相距多少千米?15. 小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A,B两地相向而行,在距中点20千米处相遇,求A,B两地的路程?16. 汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?17. 学校运来一批树苗, 五.1班的40个同学都去参加植树活动,如果每人植3棵全班同学能植这批树的一半还多20棵,如果要这批树苗全部给五.1班同学去植,平均每人植多少棵树?18. 甲,乙两人同时从两地出发,相向而行.距离是100千米.甲每小时行6千米,乙每小时行4千米.甲带着一只狗,狗每小时行10千米,这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇时,这只狗一共走了多少千米?19. 两队同学同时从相距30千米的甲,乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断地往返送信,如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度?20. 甲,乙两车同时从A,B两地相向出发,3小时后,两车还相距120千米,又行3小时,两车又相距120千米, A,B两地相距多少千米?21. 快, 慢两车早上6时同时从甲,乙两地相向开出,中午12时两车还相距50千米,继续行驶到14时,两车又相距170千米,甲,乙两地相距多少千米?

有什么比较难的题,关于数学的,小学奥数题,谢谢!

1、七棵小树桩排成一行,最左面的空着,其他6棵树桩上坐着6只小猴,它们依次穿着6、5、4、3、2、1号的衣服。小猴们在树桩上有规则地跳来跳去。每一次,一只猴子可能跳到相邻的空树桩上,或越过一棵的空树桩上。跳了21次后,小猴的号码顺序恰好变成了1、2、3、4、5、6。想一想,猴子是按什么顺序跳的?2、在一次足球循环赛中,胜一场得3分,平一场得1分,负一场得0分。结果冠军队胜场最少得分却最高,冠军队至少得()分。3、用一个尽可能小但比1大的整数乘以1997,使其乘积中出现5个连续的9,这个乘积是多少?4、某幼儿园的小班人数最少,中班有27人,大班比小班多6人。春节分橘子25箱,每箱不超过60个,不少于50个,橘子总数的个位数字是7。若每人分19个,则橘子数不够。现在大班每人比中班每人多分1个,中班每人比小班每人多分1个,刚好分完。问这时大班每人分多少橘子?小班多少人?5、古代有个皇帝,一天命令赵、钱、孙、李、周、吴、郑、王八员大将陪他外出打猎。经过一番追逐,一员大将用箭射中了一只鹿。是哪员大将射中的?开始谁也不清楚,这时皇帝不让去看箭上刻的姓氏,而要大家猜一猜是谁射中的。于是八员大将众说纷纭。赵:“或者是王将军射中的,或者是吴将军射中的。”钱:“如果这箭正好射在鹿的头上,那肯定是我射中的。”孙:“我可以断定是郑将军射中的。”李:“即使这箭正好射在鹿的头上,也不可能是钱将军射中的。”周:“赵将军猜错了。”吴:“不会是我射中的,也不是王将军射中的。”郑:“不是孙将军射中的。”王:“赵将军没猜错。”猜完以后,皇帝命人把鹿身上的箭拔出来验看,证实八大将军中有三个人猜对了。请你判断一下,究竟鹿死谁手。6、】□+□□+□□□=□□□□问:共有几种填法使等式成立?7、环形跑道周长800米,甲乙两人同时同地逆时针沿跑道训练,甲每分100米,乙每分80米,甲、乙两人每200米休息一分钟,甲几分钟追上乙?8、9000个学生围成一圈,1、2、3,1、2、3,……循环报数,每次都留下报1的,一直下去,最后留下的开始的编号是多少?(人数为2时,认为最后留下的是1号)9、有2007粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取7粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?10、宝安出租公司出租汽车收费标准是:2千米以下(含2千米),收费7.00元;2千米以上,每增加1千米,加收1.60元。张红乘出租车行驶了5千米,应付费( )元;绵红的爸爸从甲地乘出租车到乙地共付了29.40元,甲乙两地的路程为( )千米。

世界上最难的数学题世界七大数学难题难倒了全世界

今天我们来和大家说说世界七大数学难题,这些可都是世界上最难的数学题哦。 说到数学难题你会想到什么,我最先想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。

世界七大数学难题:

1、P/NP问题(P versus NP)

2、霍奇猜想(The Hodge Conjecture)

3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。

4、黎曼猜想(The Riemann Hypothesis)

5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)

6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)

7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)

所谓的世界七大数学难题其实是于2000年5月24日由由美国克雷数学研究所公布的七个数学难题。也被称为千禧年大奖难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。

一:P/NP问题

P/NP问题是世界上最难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。 复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。很可能,计算理论最大的未解决问题就是关于这两类的关系的: P和NP相等吗? 在2002年对于100研究者的调查,61人相信答案是否定的,9个相信答案是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理独立,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫NPC)的集合在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中最不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和NPC类之间的关系如图中所示,其中P和NPC类不交。

假设P ≠ NP的复杂度类的图解。如P = NP则三个类相同。 简单来说,P = NP问题问道:如果是/不是问题的正面答案可以很快验证,其答案是否也可以很快计算?这里有一个给你找点这个问题的感觉的例子。给定一个大数Y,我们可以问Y是否是复合数。例如,我们可能问53308290611是否有非平凡的因数。答案是肯定的,虽然手工找出一个因数很麻烦。从另一个方面讲,如果有人声称答案是"对,因为224737可以整除53308290611",则我们可以很快用一个除法来验证。验证一个数是除数比找出一个明显除数来简单得多。用于验证一个正面答案所需的信息也称为证明。所以我们的结论是,给定正确的证明,问题的正面答案可以很快地(也就是,在多项式时间内)验证,而这就是这个问题属于NP的原因。虽然这个特定的问题,最近被证明为也在P类中(参看下面的关于"质数在P中"的参考),这一点也不明显,而且有很多类似的问题相信不属于类P。 像上面这样,把问题限制到“是/不是”问题并没有改变原问题(即没有降低难度);即使我们允许更复杂的答案,最后的问题(是否FP = FNP)是等价的。

关于证明的难度的结果

虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 最常被引用的结果之一是设计神谕。假想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题