本文目录
稀有气体的发现史
1868年,天文学家在太阳的光谱中发现一条特殊的黄色谱线D3,这和早已知道的钠元素的D1和D2两条黄色谱线不同,由此预言在太阳中可能有一种未知元素存在。后来将这种元素命名为“氦”,意为“太阳元素” 。20多年后,拉姆塞证实了地球上也存在氦元素。1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。他认为这种气体可能是氮气或氩气,但没有继续研究。拉姆塞知道这一实验后,用钇铀矿重复了这一实验,得到少量气体。在用光谱分析法检验该气体时,原以为能看到氩的谱线,却意外地发现一条黄线和几条微弱的其他颜色的亮线。拉姆塞把它与已知的谱线对照,没有一种同它相似。经过苦苦思索,终于想起27年前发现的太阳上的氦。氦的光谱正是黄线,如果这两条黄线能够重合,那么钇铀矿中放出的气体应是太阳元素氦了。拉姆塞十分谨慎,请当时英国最著名的光谱专家克鲁克斯帮助检验,证实拉姆塞所得的未知气体即为“太阳元素”气体。1895年3月,拉姆塞在《化学新闻》上首先发表了在地球上发现氦的简报,同年在英国化学年会上正式宣布这一发现。后来,人们在大气中、水中、天然气中、石油气中以及铀和外的矿石中,甚至在陨石中也发现了氦。1902年,德米特里·门捷列夫接受了氦和氩元素的发现,并这些稀有气体纳入他的元素排列之内,分类为第0族,而元素周期表即从该排列演变而来 。拉姆塞继续使用分馏法把液态空气分离成不同的成分以寻找其他的稀有气体。他于1898年发现了三种新元素:氪、氖和氙。“氪”源自希腊语“κρυπτ(kruptós)”,意为“隐藏”;“氖”源自希腊语“νο(néos)”,意为“新”;“氙”源自希腊语“ξνο(xénos)”,意为“陌生人”。氡气于1898年由弗里德里希·厄恩斯特·当发现,最初取名为镭放射物,但当时并未列为稀有气体 。直到1904年才发现它的特性与其他稀有气体相似。1904年,瑞利和拉姆塞分别获得诺贝尔物理学奖和化学奖,以表彰他们在稀有气体领域的发现 。瑞典皇家科学院主席西德布洛姆致词说:“即使前人未能确认该族中任何一个元素,却依然能发现一个新的元素族,这是在化学历史上独一无二的,对科学发展有本质上的特殊意义。 ”稀有气体的发现有助于对原子结构一般理解的发展。在1895年,法国化学家亨利·莫瓦桑尝试进行氟(电负性最高的元素)与氩(稀有气体)之间的反应,但没有成功。直到20世纪末,科学家仍无法制备出氩的化合物,但这些尝试有助于发展新的原子结构理论。由这些实验结果,丹麦物理学家尼尔斯·玻尔在1913年提出,在原子中的电子以电子层形式围绕原子核排列,除了氦气以外的所有稀有气体元素的最外层的电子层总是包含8个电子。1916年,吉尔伯特·牛顿·路易斯制定了八隅体规则,指出最外电子层上有8个电子是任何原子最稳定的排布;此电子排布使它们不会与其他元素发生反应,因为它们不需要更多的电子以填满其最外层电子层。但到了1962年,尼尔·巴特利特发现了首个稀有气体化合物六氟合铂酸氙。其他稀有气体化合物随后陆续被发现:在1962年发现了氡的化合物二氟化氡;并于1963年发现氪的化合物二氟化氪。2000年,第一种稳定的氩化合物氟氩化氢(HArF)在40K(-233.2℃)下成功制备。 1998年12月,俄罗斯杜布纳的联合核研究所的科学家以钙原子轰击钚来产生114号元素的单一原子,后来被命名为Fl。初步化学实验已显示该元素可能是第一种超重元素,尽管它位于元素周期表的第14族,却有着的稀有气体特性。2006年10月,联合核研究所与美国劳伦斯利福摩尔国家实验室的科学家成功地以钙原子轰击锎的方法,人工合成了Uuo,它是18族的第七个元素 。2013年12月12日,两个研究超新星爆炸残骸的国际科研小组分别在美国《科学》杂志上报告说,他们在宇宙中首次发现了惰性气体分子,并在恒星爆炸的中心首次观测到生命的六大基本元素之一——磷的形成。英国伦敦大学学院教授迈克·巴洛与同事利用欧洲航天局的赫舍尔太空望远镜,在远红外波段观测距地球6500光年的蟹状星云,结果发现了氩氢分子。他们所观测到的是氩的同位素氩36,来自蟹状星云中心的中子星的能量令其发生电离,然后与氢形成氩氢分子。这一发现也同时支持氩36同位素起源于超新星中心的理论。在另一项研究中,韩国与美国研究人员发现银河系内已知最年轻的超新星残骸仙后座A中存在大量的磷。他们利用美国加州帕洛马山天文台5米口径的黑尔望远镜进行的观测表明,仙后座A中磷与铁56同位素的比率比银河系其他地方高出100倍,这说明磷也是在超新星中产生的。在2013年以前,科学家已观测到生命的另五大基本元素碳、氢、氧、氮与硫在宇宙中的起源。 大约氮气发现的百年之后,英国化学家瑞利(Rayleigh,J.W.S.1842-1919),一方面从空气中除掉氧气、二氧化碳、水蒸气得到氮气;另一方面从氮化物分解制得氮气。他把这两种来源不同的氮气进行比较,发现在正常状态下前者的密度是1.2572克/升,后者的密度是1.2508克/升,为什么空气中的氮气密度要大些呢?是不是其中还有较重的不活泼气体?英国化学家莱姆大塞(Ramsay,W.1852-1916)用燃烧的镁与空气中的氮气作用,以除去空气中的氮,结果剩下少量的稀有气体。经光谱检验,证明是一种新的气体元素叫做氩。后几年他用分级蒸馏法,从粗制的氩中分离出其它三种稀有气体──氖、氪、氙。1895年,莱姆塞用硫酸处理沥青油矿,产生一种气体,用光谱鉴定为氦。由于他先后发现氦、氖、氪、氩、氙,获得了1904年诺贝尔化学奖。
什么是惰性气体
惰性气体是指元素周期表上所有0族元素对应的气体单质。
在常温常压下,它们都是无色无味的单原子气体,很难进行化学反应。稀有气体共有7种,它们是氦气(He)、氖气(Ne)、氩气(Ar)、氪气(Kr)、氙气(Xe)、氡气(Rn,放射性)、(气奥)(Og,放射性,人造元素)。
惰性气体的发现史:
1868年,天文学家在太阳的光谱中发现一条特殊的黄色谱线D3,这和早已知道的钠元素的D1和D2两条黄色谱线不同,由此预言在太阳中可能有一种未知元素存在。后来将这种元素命名为“氦”,意为“太阳元素”。
20多年后,拉姆塞证实了地球上也存在氦元素。1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。他认为这种气体可能是氮气或氩气。但没有继续研究。拉姆塞知道这一实验后,用钇铀矿重复了这一实验,得到少量气体。
以上内容参考:百度百科—惰性气体
威廉·拉姆塞的发现惰性气体
威廉·拉姆塞得知瑞利的研究以后:征得了瑞利的允许,也开始研究大气中氮的成分,他研究的方法是让空气在红热的镁上通过,让镁吸收空气中的氧和氮。经过反复作用,原空气体积的79/80都已被吸收,只余下1/80。起初,威廉·拉姆塞认为余下的气体是氮的一种变种,可能是类似臭氧的物阮但经过精密的光谱分析发现,余下的气体,除了氮的谱线以外,尚有原来人们不知道的红色和绿色各种谱线,经克鲁克斯分析,剩余气体的谱线多达200余条。1894年5月24日,威廉·拉姆塞给瑞利的信中与道:“您可曾想到,在周期表第一行最末的地方,还有空位留给气体元素这一事实吗?”同年8月7日他给瑞利的信中又写道:“我想最好用两个人的名义发表,对于您的提议,我非常感谢,因为我觉得,一个幸运的机会,已经使我能够制取大量的Q,此外还有两种X……”之后,正值英国科学协会在牛津开会,威廉·拉姆塞和瑞利向大会宣布,发现了一种惰性气体。与会学者都很吃惊,这一发现,以主席马登(H.0.Madan)的提议,定名为氩(Argon),即“懒惰的气体”。元素氖发现以后,威廉·拉姆塞在他开发的领域继续深入研究,1895年3月17日,他把他研究太阳元素氦的情况,写信给布卡南(Bachanan),信中说,“那种沥青铀矿经无机酸处理以后,放出的惰性气体,克鲁克斯认为它的光谱是新的,而我从处理方法上来看,我敢确定它不是氖,现在正忙于继续制取,数日以后,我希望能制得足量的做密度测定,我想,也许就是寻求已久的氢吧。”不到一周,威廉·拉姆塞就证明了,这种物质是氦。1895年3月24日,威廉·拉姆塞给他的夫人的信中写道:“先讲一个最新的消息吧,我把新气体先封人一个真空管,这样装好以后,就在分光器上看到它的光谱,同时也看到氖的光谱,这气体中是含有氩的,但是忽又见到一种深黄色的明线,光辉灿烂,和钠的光线虽不重合,可也相差不远,我惶惑了,开始觉得可疑。我把这事告诉了克鲁克斯,直到星期六早晨,克鲁克斯拍来电报。电文如下:从钒铀矿中分离出的气体,为氩和氦两神气体的混和物。”威廉·拉姆塞发现氩、氦两种气体以后,继续研究,又发现了氪、氖和氙。 威廉·拉姆塞威廉·拉姆塞继续发现的各种惰性气体,多得特拉弗斯的帮助,他们设法取得了1升的液态空气,然后小心地分步蒸发,在大部分气体沸腾而去之后,遗下的残余部分,氧和氮仍占主要部分。他们进一步用红热的铟和镁吸收残余部分的氧和氮,最后剩下25毫升气体。他们把25毫升气体封人玻璃管中,来观察其光谱,看到了一条黄色明线,比氦线略带绿色,有一条明亮的绿色谱线,这些谱线,绝对不和已知元素的谱线重合。威廉·拉姆塞和特拉弗斯在1898年5月30日,把他们新发现的气体命名为氪(Krypton),意即隐藏的意思。他们当晚测定了这种气体的密度、原子量,同时发现,这种惰性气体应排在溴和铷两元素之间。为此,他们一直工作到深夜,特拉弗斯竟把第二天他自己要举行的博士论文答辩部忘得一干二净。威廉·拉姆塞和特拉弗斯用减压法继续分馏残留空气,收集了从氩气中挥发出的部分,他们发现,这种轻的部分,“具有极壮丽的光谱,带着许多条红线,许多淡绿线,还有几条紫线,黄线非常明显,在高度真空下,依旧显著,而且呈现着磷光。”他们深信,又发现了一种新的气体,特拉弗斯说:“由管中发出的深红色强光,已叙述了它自己的身世,凡看过这种景象的人,永远也不会忘记,过去两年的努力,以及在全部研究完成以前所必须克服的一切困难,都不算什么。这种未经前人发现的新气体,是以喜剧般的形式出现的,至于这种气体的实际光谱如何,尚无关紧要,因为就要看到,世界上没有别的东西,能比它发出更强烈的光来。”威廉·拉姆塞有个13岁的儿子名叫威利,他曾向父亲说:“这种新气体您打算怎么称呼它,我倒喜欢用nove这个词。”威廉·拉姆塞赞成他儿子的提议,但他认为不如改用同义的词neon,这样读起来更好听。这样,1898年6月,新发现的气体氖就确定了名称,它含有“新奇”的意思。以后氖成了霓虹灯的重要材料。1898年7月12日,由于他们有了自己的空气液化机,从而制备了大量的氪和氖,把氖反复分次革取,又分离出一种气体,命名为xenon(氙)。含有“陌生人”的意思。这样一来,惰性气体家庭氦、氖、氩、氙、氡、氪,除了氦是詹森和罗克耶尔通过分光镜从太阳上首先发现之外,其余的都是威廉·拉姆塞发现的。不过氡是1910年发现的。那是威廉·拉姆塞获得诺贝尔化学奖8年以后的事情了。
常见的稀有气体的作用
常见的稀有气体的作用有作保护气、作电光源、充气等。
1、作保护气
利用稀有气体极不活动的化学性质,有的生产部门常用它们来作保护气。例如,在焊接精密零件或镁、铝等活泼金属,以及制造半导体晶体管的过程中, 常用氩作保护气。
2、作电光源
氖灯常用在机场、港口、水陆交通线的灯标上。灯管里充入氩气或氦气,通电时分别发出浅蓝色或淡红色光。在灯管里充入不同含量的氨、氛、氩的混合气体,就能制得五光十色的霞虹灯。
3、充气
氨气是除了氢气以外最轻的气体,不能燃烧也不助燃,而氢气易燃易爆,现在已用氦气代替氢气充填气球、气艇。
扩展资料
1785年,英国科学家卡文迪许通过实验发现,把不含水蒸气、二氧化碳的空气除去氧气和氨气后,仍有很少量的残余气体存在。这种现象在当时并没有引起化学家的重视。
一百多年后,英国物理学家香利测定氨气的密度时,发现从空气里分离出来的氨气每升质量是1.2572克,而从含氨物质制得的氨气每升质量是1.2505克。经多次测定,两者质量相差仍然是几毫克。
可贵的是雷利没有忽视这种微小的差异,怀疑从空气分离出来的氮气里含有没被发现的较重的气体。于是,查阅了卡文迪许过去写的资料,并重新做了实验。1894年,在除掉空气里的氧气和氮气以后,得到了很少量的极不活泼的气体。
与此同时,雷利的朋友、英国化学家拉姆塞用其它方法从空气里也得到了这样的气体。经过分析,判断该气体是一种新物质。由于这气体极不活泼,所以命名为氩(拉丁文原意是“懒惰”)。以后几年里,拉姆塞等人又陆续从空气里发现了氢气和氛气。
氨、氛、氩、氛、等气体总称稀有气体,这些气体都是没有颜色,没有气味的。过去,人们认为这些气体不跟其它物质发生化学反应,曾叫做惰性气体。但随着科学技术的发展,已经发现,在一定的条件下,有些稀有气体也能跟某些物质发生化学反应,生成其它物质。
参考资料来源:百度百科-稀有气体
稀有气体的化学性质很不活波,那又是如何被发现的
其实很多稀有气体被发现都是因为他们不活泼。比如说分离液态空气后,发现除了氧气,氮气外,始终剩下一些非常惰性的物质。再者,科学家做实验室发现产生一种气体,对他们来说可能是意料之外的。因此就对它们做燃烧实验,做酸处理,碱处理,氧化还原实验,发现始终未反应,此时就可定义他们惰性。当然这些都是很定性的,可是别忘了,光谱在两百多年前就有了,它可以帮你判断是不是一种未发现的气体。所以说不是为了寻找稀有气体,刻意去一个个尝试;而是说有了意外的新发现,再去实验它是不是稀有气体。